

International Journal of Science, Technology and Applications

ISSN Elektronik: 3024-9228

https://ejournal.ahs-edu.org/index.php/ijsta/about Published by Alpatih Harapan Semesta

Penerapan Media Bioflok Dalam Budidaya Ikan Lele Dumbo Dan Ikan Gurame Di Desa Kejuden Kecamatan Depok Kabupaten Cirebon

¹Nurlaeli, ²Nurul Ekawati, ³Teni Novianti*

^{1,2,3}Prodi Budidaya Perikanan Universitas Nahdlatul Ulama Cirebon, Jawa Barat, Indonesia *Korespondensi: teninovianti.83@gmail.com

DOI: https://doi.org/10.70115/ijsta.v2i2.233

Article Info

Article history:

Received: Oct 29, 2024 Revised: Nov 27, 2024 Accepted: Dec 31, 2024

Keywords:

Cultivation; Fish, Biofloc Media; Claries Gariepinus; Osphronemus Gurame

ABSTRACT

Fish farming is an effort to utilize the resources around to achieve a common goal in a group, This activity is carried out in order to produce fish in a controlled and profit-oriented container or media. It is hoped that the products produced will be multiplied and abundant. After field observations in Kejuden Village, there is some information that the problems faced by fish farmers due to limited resources such as land and water are the main obstacles in dumbo catfish cultivation and carp farming, especially in areas with high population density such as Kejuden Village. One of them is the use of biofloc media. In this study, the researcher used a case study research method. is a research procedure that produces descriptive data obtained from informants in the field, The data collection techniques used are interviews, and observations. Based on the results of research in the field, biofloc fish cultivation techniques have been applied such as feeding, probiotic administration and fish pond maintenance, but there are several techniques that are not applied such as water quality measurement, temperature, fish growth monitoring and weight monitoring per fish. Based on the results of the study, the researcher concluded that there are several stages in the cultivation process, namely the preparation stage, both land preparation, broodstock, spawning, and other facilities that support the catfish cultivation process. The land preparation in question is the preparation of a pond for catfish cultivation. There are various types of mini kola such as earthen ponds, tarpaulin ponds, and cast ponds, or even by using other media that have currently been developed so that the process of cultivating catfish using biofloc requires a lot of great preparation.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

@2024 AHS Publisher

PENDAHULUAN

Ikan diartikan sebagai hewan yang hidupnya hingga 80% dihabiskan di dalam air untuk berkembang dan tumbuh salah satu yang menjadi sumber pangan bermanfaat adalah ikan, sebab ikan memiliki protein, vitamin, mineral dan lemak. Vitamin dan mineral. Seperti halnya daging, akan tetapi ikan memiliki kelebihan adalah kandungan omega-3 dan omega-6 yang dibutuhkan terutama anak-anak. Selain itu, daging ikan tidak menimbulkan kolestrol dan darah tinggi bagi yang mengonsumsinya. Ikan dapat hidup 3 jenis perairan, yaitu tawar, payau dan laut. Masing- masing ekosistem mendukung kegiatan budidaya dan memberikan kelayakan hidup bagi biota yang ada didalamnya. Akan tetapi, terdapat permasalahan yang terjadi di dalam perairan laut yaitu, pencemaran dan kerusakan ekosistem. (Purnaningsih & dkk, 2020). Budidaya ikan kini menjadi sektor produksi pangan utama yang tumbuh lebih cepat dengan menyumbang 44% dari total produksi ikan secara global. FAO (dalam Wahyuningsih & Gitarama, 2020:113) menerangkan bahwa meskipun tingkat pertumbuhan tidak lagi setinggi tahun 1980 dan 1990an, (Sri Wahyuningsih, 2020).

Ketahanan pangan merupakan isu global yang krusial dan perlu mendapatkan perhatian serius. Populasi dunia yang terus meningkat dan perubahan iklim menjadi faktor utama yang mengancam ketahanan pangan (Saeptenno & Tjiptabudy) (2019). Dalam mengahadapi tantangan ini, diperlakukan upaya kolektif untuk memastikan akses yang berkelanjutan terhadap pangan yang aman, bergizi, dan terjangkau bagi semua orang (Hidayat, 2023). Budidaya ikan merupakan suatu upaya dalam memanfaatkan sumber daya yang ada disekitar untuk mencapai tujuan bersama dalam kelompok. Kegiatan ini dilakukan dalam rangka memproduksi ikan dalam suatu wadah atau media terkontrol dan berorientasi pada keuntungan. Harapannya, produk yang dihasilkan akan berlipat dan berlimpah. .(Amalnya dkk. 2023).

Desa kejuden adalah desa yang terletak di Kecamatan Depok Kabupaten Cirebon Jawa Barat. Di Desa Kejuden ini terdapat sungai kecil dimana airnya sebagian digunakan untuk perairan sawah dan digunakan untuk mengairi kolam ikan terhadap teknologi budidaya yang masih tradisional. Pada hasil survei yang telah di lakukan bahwa jumlah pembudidaya Desa Kejuden ialah 10 Pembudidaya dengan komoditas ikan lele dumbo adalah 6 pembudidaya, 2 Pembudidaya Gurame dan 2 khusus pemancingan, Salah satu pembudidaya ikan di Desa Kejuden ialah Bapak Munandar, jenis ikan yang dibudidaya terdapat ikan lele Dumbo dengan jumlah kolam dan hasil produksi 57 – 135 Kg/Siklus per kolam. Usaha budidaya ini sudah berjalan selama kurang lebih 14 Tahun tepatnya pada tahun 2010 tempat budidaya ini didirikan. Namun karena akhir-akhir ini ketersediaan air semakin berkurang, dengan pengetahuan terbatas, usaha budidaya ikan lele dan ikan gurame ini kurang berkembang. Salah satu kendala yang dihadapi oleh pembudidaya yaitu musim kemarau kolam ikan mengalami kekurangan air yang dipanen pun masih rendah.

Setelah dilakukan observasi lapangan di desa kejuden terdapat beberapa informasi bahwa permasalahan yang dihadapi oleh para pembudidaya ikan karena keterbatasan sumber daya seperti lahan dan air menjadi kendala utama dalam budidaya lele dumbo dan budidaya ikan gurame, terutama di daerah dengan kepadatan penduduk yang tinggi seperti Desa Kejuden. Hal ini mendorong munculnya inovasi dalam budidaya lele dumbo, salah satunya adalah penggunaan media bioflok.

Konsep teknologi bioflok sangat sederhana yaitu limbah nitrogen (amonia dari sisa pakan yang berpotensial racun diubah menjadi protein ganda yaitu sebagai pakan dan protein bakteri, yang kemudian dapat dimanfaatkan oleh ikan sebagai pakan alternatif dan tersedia sepanjang waktu. Melalui penerapan teknologi bioflok ini dapat menghemat biaya pakan, menjaga kualitas air budidaya serta memberikan keuntungan yang lebih besar.(Abror, Fitria, & Palipi, 2021).

Suparno dan Muhammad Qosim (dalam Faridah, dkk 2019) telah mengembangkan metode bioflok dalam meningkatkan produksi dan kualitas ikan. Ikan yang dihasilkan 270 - 900 ekor/m dibandingkan dengan metode konvesional hanya menghasilkan 100 ekor/m. Oleh sebab itu, pelatihan ini dilakukan dengan menggunakan metode bioflok. Nadya Adharani mendapatkan bahwa metode bioflok dapat memperbaiki kualitas air yang dilihat dari penurunan konsentrasi TAN, amoniak, nitrit da nitrat (Faridah, Diana, & Yunianti, 2019).

Keunggulan sistem bioflok adalah: kelangsungan hidup ikan sangat tinggi mencapai 90 %, menghemat biaya pakan karena sisa pakan dan feses dapat diubah lagi menjadi pakan, padat tebar tinggi yaitu mencapai 1000 ekor/kolam, ikan budidaya pertumbuhannya cepat, lama peliharaan lebih cepat berkisar 2-3 bulan, air tidak perlu sering diganti serta kualitas air lebih baik karena tidak bau sehingga tidak berdampak mencemari lingkungan (Suprapto, 2019).

Penelitian ini telah dilakukan oleh peneliti sebelumnya yaitu dengan judul "Pengembangan Budidaya Ikan lele Dengan Teknologi Bioflok Sebagai Upaya Mengurangi Kemiskinan Masyarakat Desa Surau Kec.kembaranjen kab. Banyumas" (Abror dkk., 2021). Berbagai penelitian dilakukan oleh peneliti- peneliti sebelumnya akan tetapi penelitian penerapan media bioflok dalam budidaya ikan lele masih belum banyak diteliti maka bisa menjadi sebagai pembaharuan penelitian yang pernah dilakukan sebelumnya dalam pengembangan sistem budidaya perikanan.

Berdasarkan latar belakang diatas, penelitian ini akan membahas mengenai "Penerapan Media Bioflok Dalam Budidaya Ikan Lele Dumbo (Clarias gariepinus) Dan Ikan Gurame (Osphronemus gurame) Di Desa Kejuden".

METODE

Dalam Penelitian ini peneliti menggunakan metode penelitian studi kasus. adalah prosedur penelitian yang menghasilkan data deskriptif yang diperoleh dari informan di lapangan, guna mendeskripsikan tentang penerapan media bioflok dalam budidaya ikan lele dumbo (Clarias gariepinus) dan ikan gurame (Osphronemusgoramy) di desa Kejuden kecamatan Depok kabupaten Cirebon, ucapan pribadi, dan nantinya metode ini menghasilkan data deskriptif. Penelitian ini menurut Nasir di dalam buku Pendekatan Penelitian Kualtitatif, bahwa metode deskriptif adalah suatu metode dalam penelitian status sekelompok manusia, suatu objek, suatu kondisi, suatu sistem pemikiran ataupun suatu kelas peristiwa pada masa sekarang.

Metode Penelitian Studi Kasus, menjelaskan bahwa studi kasus adalah sebuah penelitian tentang suatu peristiwa yang telah terjadi tanpa si peneliti melakukan intervensi apapun. Di dalam studi kasus, peneliti bukan menjadi bagian dari konteks objek penelitian, melainkan peneliti mendatangi untuk menginvestigasi, menganalisis, dan mempertimbangkan berbagai faktor dan komponen yang kemungkinan saling mempengaruhi., (Tony, 2020).

HASIL DAN PEMBAHASAN

A. Hasil Penelitian

1. Teknik Penerapan Budidaya Ikan pada Media Bioflok

Budidaya sistem bioflok adalah teknologi budidaya ikan untuk memperbaiki kualitas air dengan memanfaatkan bakteri heterotrof untuk mengubah N organik dan anorganik yang bersumber dari feses dan sisa pakan ikan menjadi biomasa (flok) yang dapat menjadi pakan alami bagi ikan (Ekasari, 2024).

Metode bioflok adalah salah satu metode alternatif dalam menyelesaikan masalah kualitas air buangandalam budidaya ikan lele. Bioflok berasal dari kata bios yang artinya kehidupan dan flock yang bermakna gumpalan, sehingga bioflok adalah kumpulan dari berbagai jenis organisme seperti jamur, bakteri, algae, protozoa, cacing, dan lain – lain, yang

tergabung dalam gumpalan. Teknologi bioflok atau lumpur aktif merupakan adopsi dari teknologi pengolahan biologis air limbah lumpur aktif dengan menggunakan aktivitas mikro organisme untuk meningkatkan carbon dan nitrogen (Faridah Et all, 2019).

Prinsip dasar Bioflok Yaitu untuk pengendalian kualitas air, memproduksi pakan alami, mengefesiensi biaya, sedangkan ke untungan teknologi bioflok yaitu, untuk meningkatkan hasil panen, menghemat air, mengurangi dampak lingkungan dari limbah buidaya, dan menekan biaya pakan hingga 20 – 30%, adapun kekurangan dan tantangannya yaitu membutuhkan pelatihan untuk pengelolaan yang efektif, investasi awal cukup mahal, ketergantungan pada keseimbangan ekosistem mikroorganisme.

Gambar 1. Media Bioflok

Tabel 1. Frekuensi Pemberian Pakan

Responden	Jenis	Umur	Dosis	Frekuensi	Jenis	Total
•	Ikan	ikan	Pakan/hari	Pemberian	Pakan	pakan
		(Bulan)		pakan		•
Pak Munandar	Lele	0 – 1	2 KG	2 kali Sehari (08:00 & 17:00)	Pelet	240 KG
		1 – 2,5	4 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
	Gurame	0 – 3	0,15 Kg	2 kali Sehari (08:00 & 17:00)	Pelet	490, 5 KG
		3 – 6	4 KG	2 Kali Sehari (08:00 & 17:00)	Pelet	
Pak Nono	Lele	0 – 1	1,5 KG	2 kali Sehari (08:00 & 17:00)	Pelet	110 KG
		1 – 2,5	1,6 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
Pak Slamet	Lele	0 – 1	2 KG	2 kali Sehari (08:00 & 17:00)	Pelet	240 KG

		1 – 2,5	4 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
Pak Udin	Lele	0 – 1	1,5 KG	2 kali Sehari (08:00 & 17:00)	Pelet	180 KG
		1 – 2,5	3,2 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
ak Tobing	Lele	0 – 1	1,5 KG	2 kali Sehari (08:00 & 17:00)	Pelet	110 KG
		1 – 2,5	1,6 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
Pak Sholikhin	Lele	0 – 1	1 KG	2 kali Sehari (08:00 & 17:00)	Pelet	120 KG
		1 – 2,5	2 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
Pak Kadori	Lele	0 – 1	2 KG	2 kali Sehari (08:00 & 17:00)	Pelet	240 KG
		1 – 2,5	4 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	
Pak Sutira	Lele	0 – 1	2 KG	2 kali Sehari (08:00 & 17:00)	Pelet	240 KG
		1 – 2,5	4 KG	2 Kali Sehari (08:00 & 17:00)	Pelet dan Usus	

Frekuensi pemberian pakan pada ikan lele dan ikan gurame, pemberian pakan dilakukan sebanyak 2 Kali sehari, jenis pakan yang digunakan campuran bisa berupa pelet atau usus untuk ikan lele dan pelet untuk ikan gurame, beberapa jadwal khusus untuk memberi pakan ikan yaitu saat pagi dan sore hari, jumlah pakan yang diberikan setiap hari adalah 1-2 Kg untuk 0-1 bulan dan 2-4 Kg untuk umur 1-2 bulan 15 hari (Panen) untuk ikan lele dan, untuk ikan gurame 0, 1 Kg untuk 1-3 bulan, 4 Kg 3-6 bulan (panen), jumlah ikan pada saat awal tebar 450-1.000 ekor dengan berat berkisaran 3 Kg -10 Kg , setelah panen berat ikan akhir mencapai 57-135 Kg dengan ketentuan 1 Kg berisikan 7 ekor ikan lele dan 2 ekor/Kg untuk ikan gurame, jumlah total pakan yang diberikan per unit atau siklus sebanyak 110-490 Kg/siklus.

Dalam menjalankan pemeliharaan ikan lele dan ikam gurame, hal pertama yang harus dilakukan adalah dengan melakukan grading minimal dua minggu sekali. Tujuannya adalah menyeragamkan ukuran lele dalam satu kolam, sehingga tingkat kanibalisme antar ikan lele

akan berkurang. Ikan lele termasuk tipikal ikan kanibalisme, hal tersebut dapat dipicu oleh dua hal, yang pertama pemberian pakan yang tidak optimal, yang kedua adalah pembudidaya tidak melakukan grading, sehingga ikan yang berukuran besar akan memangsa ikan yang berukuran lebih kecil.

Penggunaan media bioflok juga dilakukan oleh Bapak Munandar sebagai berikut diantaranya "Memastikan kolam memiliki pasokan oksigen yang cukup, cek kualitas air setiap hari, jika terdapat gumpalan flok yang banyak maka ganti air separuh, kurangi intensitas pemberian makan"

Berdasarkan hal ini sejalan dengan teori Afrianto dan Liviawati (2019) kebutuhan protein ikan di tentukan oleh umur dan ukuran ikan. Untuk dapat mencapai pertumbuhan yang optimal ikan leledan ikan gurame membutuhkan protein dalam pakan sebesar 35 %.Ikan membutuhkan konsentrasi protein pakan yang tinggi, karena sebagian besar produksi energi bergantung pada oksidasi dan katabolisme protein.

FCR adalah ukuran rasio jumlah pakan yang dibutuhkan untuk menghasilkan 1 kg daging ikan. FCR yang rendah menandakan bahwa kualitas pakan yang diberikan baik, sedangkan FCR yang tinggi menandakan bahwa kualitas pakan yang digunakan kurang baik.

 $FCR \; ; \; Jumlah\; pakan\; (kg) \, / \; (berat\; total\; ikan\; saat\; panen\; (kg) - total\; berat\; ikan\; pada\; awal\; tebar\;$

2. SR (Survival Rate)

Dalam hal operasional, bioflok tidak cocok ditempatkan di ruangan full indoor karena terdapat mikroorganisme yang berfotosintesis, sehingga membutuhkan cahaya matahari. Maka kolam indoor yang selalu mendapat pasokan cahaya matahari, akan lebih baik jika kolam tersebut ternaungi dengan baik. Jumlah tebar pada ikan per unit bioflok adalah 1000 ekor/kolam, dengan rata rata kematian ikan per unit bioflok 10-20%, sementara hasil panen per unit bioflok 3 Kwintal, Berdasarkan hasil penelitian sejalan dengan teori bahwa Daya hidup ikan dihitung dengan mengurangi jumlah ikan awal dengan jumlah ikan akhir. Tingkat kelangsungan hidup menggunakan rumus (Effendi, 2002).SR=Nt No x100% Keterangan:SR=SurvivalRate (%)Nt=Jumlah ikan yang hidup pada akhir Metode Penelitian.

Tabel 2. Survival Rate Budidaya Ikan Kepadatan Bioflok

Jenis Ikan	Diameter Kolam	Jumlah Kepadatan Ikan (NO) Ekor			
Lele	$7,70 \text{ m}^3$	23.271 ekor			
Gurame	$7,70 \text{ m}^3$	23.271 ekor			
Lele	6 m ³	14.130 ekor			
Lele	8 m^3	25.120 ekor			
Lele	7 m^3	19.233 ekor			
Lele	6 m ³	14.130 ekor			
Lele	6 m ³	14.130 ekor			
Lele	$7,70 \text{ m}^3$	23.271 ekor			
Lele	$7,70 \text{ m}^3$	23.271 ekor			

	Jenis Ikan	Diameter Kolam	Jumlah Kepadatan Ikan (NO) Ekor	Jumlah Ikan Yang Hidup (NT)	Survival Rate (SR)	Mortalitas		Hasil
Responden						Jum Ikan Mati	Persentasi	Panen Persiklus
Pak	Lele	7,70 m ³	1000 ekor	900	90%	100	10%	128,7 Kg
Munandar				ekor		ekor		
	Gurame	$7,70 \text{ m}^3$	300 ekor	270	90%	30	10%	135 Kg
				ekor		ekor		
Pak Nono	Lele	6 m^3	450 ekor	396	88%	54	12%	57 Kg
				ekor		ekor		
Pak Slamet	Lele	7 m^3	1000 ekor	800	80%	200	20%	114,4 Kg
				ekor		ekor		
Pak Udin	Lele	7 m^3	750 ekor	645	86%	105	14%	92,2 Kg
				ekor		ekor		
Pak Tobing	Lele	6 m^3	450 ekor	405	90%	45	10%	58 Kg
				ekor		ekor		
Pak	Lele	6 m ³	500 ekor	450	90%	50	10%	71,5 Kg
Sholikhin				ekor		ekor		_
Pak Kadori	Lele	$7,70 \text{ m}^3$	1000 ekor	900	90%	100	10%	128, 7
				ekor		ekor		Kg
Pak Sutira	Lele	$7,70 \text{ m}^3$	1000 ekor	900	90%	100	10%	128, Kg
				ekor		ekor		_

Tabel 3. Data Penelitian Survival Rate Di Lapang

3. Kualitas Air

Kualitas air yang dilakukan Para Pembudidaya cukup baik, karena dilakukan pengecekan kualitas air rutin setiap satu minggu sekali, hal ini untuk menjaga keseimbangan kehidupan pada ikan ikan yang dibudidaya, menurut salah satu responden saat ditanyakan melalui metode wawancara berupa pertanyaan bagaimana kualitas air yang ideal untuk budidaya ikan, pak munandar menjawab berikut "Air harus jernih, diganti setiap seminggu sekali dan pengecekan dilakukan setiap hari bahwa memastikan air masih jernih didalam kolam".

Gambar 2. Budidaya bioflok

Dengan menggunakan metode bioflok ikan lele yang dihasilkan lebih banyak, sehat dan penggunakan air lebih sedikit daripada menggunakan budidaya metode konvesional,

penggunaan air setiap 1m dengan kepadatan ikan sekitar 2000 ekor, sedangkan dengan konvesional hanya 100 ekor. Kolam yang telah mengandung flok – flok selanjutnya ditebarkan bibit ikan lele. Pada gambar dapat dilihat bahwaair kolam yang telah dilakukan proses fermentasi selama 15 (lima belas) hari menghasilkan warna yang hijau, dan agak berbau. Ini merupakan ciri-ciri dari adanya flok-flok yang dapat dimanfaatkan oleh ikan lele.

Pergantian air pada kolam budidaya ikan lele dapat dilakukan apabila baru saja terjadi hujan, atau tercium bau tidak sedap di kolam. Penggantian air maksimal hanya 50% dari seluruh jumlah air di dalam kolam.Ketika melakukan penggantian air, disarankan membuang yang terdapat di sekitar bagian dasar kolam karena air tersebut mengandung racun yang sangat berbahaya bagi kelangsungan hidup ikan lele.Sebelum mengganti air, ikan lele diwajibkan berpuasa selama 12 hingga 24 jam penuh. Bertujuan untuk menghindari stress pada ikan, dikarenakan ketika air diganti, ikan yang stres akan memuntahkan makanan yang telah diberikan.

Selain itu peneliti juga mengajukan pertanyaan mengapa penting dalam menjaga kualitas air di budidaya perikanan, pak munandar menjawab "sangat penting karena itu hal yang membuat ikan terus bertahan hidup". Berdasarkan hasil wawancara peneliti dan Bapak Munandar, peneliti menyimpulkan bahwa hasil wawancara sejalan dengan teori Scabra et al.,bahwa Pengelolaan kualitas air harus diimbangi juga dengan pengelolaan lingkungan yang baik karena dalam budidaya ikan, lingkungan dan kualitas air saling terkait satu sama lain.

4. Produktivitas dan Media

Berdasarkan hasil identifikasi lingkungan internal dan eksternal, modal awal yang dilakukan oleh Pak munandar adala 20 Juta Rupiah, dalam hasil wawancara pak Munandar memberi Informasi bahwa beberapa pencegahan untuk meminimalisir saat budidaya ikan yaitu sebagai berikut "dalam budidaya pasti ada saja kerugian, namun untuk meminimalisir bisa dengan cara mengecek kualitas air, agar Kesehatan dan umur ikan tetap terjaga dan bisa berkembangbiak".

Untuk memasarkan ikan sendiri cara pak munandar yaitu dengan " dengan melakukan Teknik menjual ke bandar, jadi saya langsung menjual dalam jumlah besar, keuntungannya seperti itu"." dengan harga jual biasanya 20.000/Kg (10 ekor Ikan).

B. Pembahasan

1. Teknik Penerapan Budidaya Ikan Pada Media Bioflok

Metode bioflok adalah salah satu metode alternative dalam menyelesaikan masalah kualitas air buangan dalam budidaya ikan lele. Bioflok berasal dari kata bios yang artinya kehidupan dan flock yang bermakna gumpalan, sehingga bioflok adalah kumpulan dari berbagai jenis organisme seperti jamur, bakteri, algae, protozoa, cacing, dan lain lain, yang tergabung dalam gumpalan. Teknologi bioflok atau lumpur aktif merupakan adopsi dari teknologi pengolahan biologis air limbah lumpur aktif dengan menggunakan aktivitas mikro organism untuk meningkatkan carbon dan nitrogen (Faridah 2019).

Budidaya ikan dengan sistem bioflok adalah salah satu metode yang semakin populer karena efisiensinya dalam penggunaan ruang dan pengelolaan limbah. Sistem bioflok memanfaatkan mikroorganisme untuk mengolah limbah organik yang dihasilkan oleh ikan menjadi floc (gumpalan mikroorganisme) yang dapat dimanfaatkan kembali sebagai pakan alami bagi ikan. Teknik ini cocok untuk budidaya ikan dalam skala kecil hingga menengah dengan tujuan meningkatkan hasil produksi ikan secara efisien.

Sistem bioflok adalah alternatif yang ramah lingkungan dan efisien untuk budidaya ikan. Penerapannya memerlukan perhatian khusus terhadap pengelolaan kualitas air, mikroorganisme, dan pemberian pakan. Namun, jika diterapkan dengan benar, sistem ini dapat

meningkatkan hasil produksi ikan dengan biaya operasional yang lebih rendah dan dampak lingkungan yang minimal.

Berdasarkan hasil penelitian yang telah dilakukan, teknik budidaya ikan bioflok sudah di terapkan di Desa Kejuden Kecamatan Depok Kabupaten Cirebon, seperti pemberian pakan, pemberian probiotik dan pemeliharaan kolam ikan sudah sesuai, namun ada beberapa teknik yang tidak di terapkan seperti pengukuran kualitas air, suhu, peninjauan pertumbuhan ikan dan pemantauan berat per ikan. Berdasarkan hasil penelitian yang dilakukan oleh Tohap Simangunsong bahwa jika tidak diterapkan pengukuran kualitas air serta peninjauan pertumbuhan ikan di kolam bioflok dapat mengganggu pertumbuhan ikan yang di budidayakan sehingga diperlukan pengukuran kualitas air secara berkala. Teknologi bioflok merupakan upaya untuk mengurangi limbah beracun dengan memanfaatkan mikroorganisme

Hal tersebut sependapat dengan penelitian yang dilakukan oleh Yani (2019) pada budidaya ikan lele di kolam bioflok Menyatakan bahwa tujuan dari pengecekan kualitas air adalah untuk mengontrol penyakit dan bakteri pada air kolam budidaya sehingga dapat dilakukan tindakan dengan segera jika kualitas air dalam keadaan buruk dalam sistem bioflok. Selanjutnya Kualitas air adalah faktor utama yang mempengaruhi kelangsungan hidup ikan. Parameter seperti oksigen terlarut (DO), suhu, harus dijaga dalam kisaran yang sesuai untuk spesies ikan yang dibudidayakan. Kualitas air yang buruk dapat menyebabkan stres pada ikan, menurunkan nafsu makan, dan meningkatkan kerentanannya terhadap penyakit. Hal ini sejalan dengan De Schryver, et al., 2019, bahwa teknologi bioflok dapat menjamin kualitas air yang baik pada kegiatan budidaya dan dapat memproduksi pakan tambahan bagi organisme yang dibudidayakan. Kualitas air yang baik dapat mendukung peningkatan produksi karena dapat meningkatkan padat tebar.

2. Frekuensi Pemberian Pakan

Frekuensi pemberian pakan pada ikan lele dan ikan gurame, pemberian pakan dilakukan sebanyak 2 Kali sehari,jenis pakan yang digunakan campuran bisa berupa pelet atau usus untuk ikan lele dan pelet untuk ikan gurame, beberapa jadwal khusus untuk memberi pakan ikan yaitu saat pagi dan sore hari, jumlah pakan yang diberikan setiap hari adalah $1-2\,$ Kg untuk $0-1\,$ bulan dan $2-4\,$ Kg untuk umur $1-2\,$ bulan 15 hari (Panen) untuk ikan lele dan, untuk ikan gurame 0, 1 Kg untuk $1-3\,$ bulan, $4\,$ Kg $3-6\,$ bulan (panen), menurut Bambang Cahyono pada tahun 2020 ikan gurame membutuhkan pakan sekitar $3-4\%\,$ dari berat tubuhnya, jumlah ikan pada saat awal tebar $450-1.000\,$ ekor dengan berat berkisaran 3 Kg $-10\,$ Kg , setelah panen berat ikan akhir mencapai $57-135\,$ Kg dengan ketentuan 1 Kg berisikan 7 ekor ikan lele dan 2 ekor/Kg untuk ikan gurame, jumlah total pakan yang diberikan per unit atau siklus sebanyak $110-490\,$ Kg/siklus.

Dalam menjalankan pemeliharaan ikan lele, hal pertama yang harus dilakukan adalah dengan melakukan grading minimal dua minggu sekali. Tujuannya adalah menyeragamkan ukuran lele dalam satu kolam, sehingga tingkat kanibalisme antar ikan lele akan berkurang. Ikan lele termasuk tipikal ikan kanibalisme, hal tersebut dapat dipicu oleh dua hal, yang pertama pemberian pakan yang tidak optimal, yang kedua adalah pembudidaya tidak melakukan grading, sehingga ikan yang berukuran besar akan memangsa ikan yang berukuran lebih kecil.

Frekuensi pemberian pakan ikan dengan jumlah pakan yang tepat akan memaksimalkan pemanfaatan pakan oleh ikan sehingga diharapkan pertumbuhan ikan akan maksimal, efisiensi biaya produksi dan mengurangi pencemaran lingkungan, semakin sering ikan diberi makan maka pertumbuhannya akan semakin cepat, pertumbuhan akan semakin meningkat dengan semakin banyaknya frekuensi pemberian pakan, jadi semakin sering pakan diberikan hasilnya semakin baik bagi pertumbuhan ikan dikarenakan kebutuhan protein untuk meningkatkan

pertumbuhan telah terpenuhi, dibandingkan dengan pemberian pakan yang jarang (Riki Indra, dkk, 2021).

Pemberian pakan yang berkualitas dan sesuai dengan kebutuhan ikan sangat penting untuk mendukung pertumbuhan dan kesehatan ikan. Pemberian pakan yang tidak tepat, baik terlalu banyak atau terlalu sedikit, dapat menyebabkan masalah kesehatan dan menurunkan tingkat kelangsungan hidup. Pemberian pakan yang berkualitas dan sesuai dengan kebutuhan ikan sangat penting untuk mendukung pertumbuhan dan kesehatan ikan. Pemberian pakan yang tidak tepat, baik terlalu banyak atau terlalu sedikit, dapat menyebabkan masalah kesehatan dan menurunkan tingkat kelangsungan hidup. Hal ini sejalan dengan teori Floyd et al., (2016) bahwa produk limbah metabolik utama pada budidaya ikan adalah amoniak. Amoniak dalam kadar yang rendah dapat menyebabkan ikan rentan terhadap infeksi bakteri dan memiliki pertumbuhan yang buruk, Bakteri dalam flok dapat mendaur ulang nutrisi dari bahan organik maupun anorganik seperti sisa pakan dan pakan yang tidak tercerna, sisa metabolisme ikan dan unsur karbon menjadi sel mikroba yang baru (Emerenciano, et al., 2016). Sifat tersebut memungkinkan ikan lele untuk memanfaatkan makanan tambahan berupa flok yang terbentuk dalam media budidaya sehingga dapat meningkatkan laju pertumbuhannya.Bioflok dapat memenuhi kekurangan protein dari pakan buatan dan dapat dijadikan sebagai pakan tambahan bagi ikan.

Dengan menyediakan pakan dengan gizi yang seimbang dan sesuai dengan tahap pertumbuhan ikan. Pakan yang berkualitas tinggi akan membantu ikan tumbuh dengan cepat dan tetap sehat. Pernyataan ini sejalan dengan teori Hanief et al., (2019) menyatakan, manajemen pemberian pakan merupakan pengelolaan kegiatan pemberian pakan, agar dapat dimanfaatkan secara efektif dan efisien oleh kultivan dengan tujuan untukmendapatkan pertumbuhan ikan yang optimal. Salah satu penerapan manajemen. Pemberian pakan adalah pengaturan frekuensi pemberian pakan. Lebih lanjut, pemberian pakan dengan waktu yang berbeda akan mempengaruhi pertumbuhan ikan.

3. Survival Rate (SR)

Survival Rate (SR) atau Tingkat Kelangsungan Hidup adalah salah satu indikator penting dalam budidaya ikan, yang menunjukkan persentase ikan yang bertahan hidup selama periode tertentu dari jumlah ikan yang dibudidayakan. SR sering digunakan untuk menilai keberhasilan atau kegagalan dalam sistem budidaya ikan, baik di kolam, keramba jaring apung, maupun sistem bioflok.

Rumus untuk Menghitung Survival Rate (SR):

$$SR = Nt X 100\%$$
 $N0$

SR (Survival Rate) atau kelulusan kehidupan ikan sangat dipengaruhi oleh kualitas air media pemeliharaan. Salah satu masalah utama pada budidaya intensif adalah terakumulasinya racun nitrogen anorganik yaitu NH4+dan NO2 pada media pemeliharaan hal ini sejalan dengan teori (Colt and Armstrong, 1981 dalam Avnimelech 1999). Budidaya intensif yang menerapkan kepadatan tinggi dan pemberian pakan buatan dapat menyebabkan pencemaran lingkungan dan peningkatan kasus penyakit.

Berdasarkan hasil penelitian yang telah dilakukan, Rata-rata SR ikan yang dibudidayakan di kolam bioflok tersebut yaitu Jumlah tebar pada ikan per unit bioflok adalah 1000 ekor sedangkan jumlah ikan yang hidup adalah 900 ekor jadi $900:1000 \times 100\% = 10\%$.

4. Kualitas Air

Kualitas air merupakan keadaan dan sifat – sifat fisik, kimia dan biologi suatu perairan yang dibandingkan dengan standar kelayakan untuk persyaratan keperluan tertentu, misalnya kualitas air untuk perikanan, pertanian dan air minum, rumah sakit, industry dan lain sebagainya. Sehingga menjadikan persyaratan kualitas air berbeda – beda sesuai dengan peruntukannya.

Kualitas air untuk budidaya ikan air tawar harus memenuhi beberapa persyaratan karena air yang kurang baik akan menyebabkan ikan mudah terserang penyakit. Sumber air yang baik dalam pemeliharaan ikan harus memenuhi kriteria kulitas air yang meliputi sifat – sifat fisika dan sifat - sifat kimia seperti suhu, kekeruhan DO, dan sebagainya, Kualitas air usaha budidaya sangat menentukan tingkat keberhasilan. Tingginya atau rendahnya kualitas air akan berakibat fatal bagi pertumbuhan ikan (Yuniarti 2020).

Hasil pengukuran suhu pada masing - masing perlakuan menunjukkan tidak adanya perbedaan yang signifikan pada Tabel 4.4 dari semua perlakuan. Nilai suhu di semua media air masing - masing perlakuan menunjukkan nilai suhu berkisar antara 27 -31°C, menurut BSN suhu optimal pertumbuhan ikan lele dan gurame berkisar antara 25 - 32°C, sedangkan konsentrasi oksigen terlarut pada masing-masing air media pemeliharaan di setiap perlakuan tidak menunjukkan adanya perbedaan yang signifikan baik polikultur atau pun monokultur.

Nilai oksigen terlarut yang telah diukur pada saat penelitian yaitu untuk ikan lele berkisar nilai kandungan oksigen terlarut (DO) pada media pemeliharaan ikan lele (Clarias sp.) minimal 3 mg/l. Kisaran ini masih berada dalam kisaran yang mendukung untuk kehidupan ikan. Kandungan oksigen terlarut yang ideal di dalam air untuk budidaya ikan tidak boleh <3,00 mg/l karena dapat menyebabkan kematian organisme air. Oksigen terlarut dibutuhkan oleh semua jasad untuk pernafasan, proses metabolisme atau pertukaran zat yang kemudian menghasilkan energi untuk pertumbuhan dan perkembangbiakan juga untuk oksidasi bahanbahan organik dan anorganik dalam proses aerob (Gunawan, 2019). dan ikan gurame yaitu. Oksigen terlarut sangat berpengaruh terhadap kehidupan perairan, sepertiproses biogeokimia. Pada sungai yang belum terpolusi, konsentrasi DO yaitu di atas 80% saturasi. Hampir semua organisme perairan peka terhadap konsentrasi oksigen. Pencemaran oleh bahan organik dapat mengurangi konsentrasi DO pada semua aliran sungai seperti proses mikrobial yang menggunakan oksigen dari air. Hal ini disebut dengan Biochemical Oxygen Demand (BOD) (Widdyastuti, 2019) nilai pengukuran tersebut berada di kisaran oksigen terlarut yang sesuai untuk kelangsungan hidup baik ikan lele ataupun ikan gurame. Oksigen terlarut yang sesuai untuk kelangsungan hidup ikan gurame yaitu <5 mg/L, sedangkan oksigen terlarut untuk ikan lele ialah minimal >3 mg/l (Andik, 2023). Hal tersebut berarti kualitas air seperti suhu dan DO di kolam bioflok selama penelitian di Desa kejuden Kecamatan Depok sudah sesuai dengan standar optimum suhu dan oksigen terlarut dalam budidaya ikan di kolam bioflok.

Menjaga kualitas air dalam kondisi ideal sesuai dengan kebutuhan spesies ikan akan mengurangi stres pada ikan dan meningkatkan daya tahan terhadap penyakit. Air yang tercemar dapat berdampak buruk pada tubuh, seperti menimbulkan penyakit diare, kolera, disentri, tipes, cacingan, penyakit kulit hingga keracunan. Oleh sebab itu menggunakan dan menjaga kualitas air bersih sangatlah penting. Hal ini sejalan dengan teori (Kementrian Perikanan Dan Kelautan, 2022).

5. Produktivitas dan Media

Bioflok adalah teknologi budidaya yang memanfaatkan kumpulan mikroorganisme (flok) untuk mengolah limbah organik dalam kolam budidaya, sekaligus sebagai sumber pakan tambahan bagi ikan atau udang. Sistem ini bertujuan menciptakan ekosistem mikroba yang

mendukung keberlanjutan budidaya, Penggunaan bioflok terbukti meningkatkan produktivitas karena:

- a. Efisiensi Pakan Mikro organisme dalam flok berperan sebagai pakan alami, mengurangi ketergantungan pada pakan buatan.
- b. Kualitas Air Terjaga Mikroorganisme menguraikan limbah organik dan menjaga keseimbangan ekosistem air.
- c. Pertumbuhan Lebih Cepat Nutrisi yang tersedia dari flok mendukung pertumbuhan ikan atau udang.
- d. Padat Tebar Tinggi Bioflok memungkinkan budidaya dengan kepadatan tinggi tanpa membahayakan kualitas air.

Media yang Digunakan dalam Bioflok:

- a. Kolam Terpal Umumnya digunakan karena mudah dibentuk dan ekonomis.
- b. Kolam Beton Tahan lama dan cocok untuk skala besar.
- c. Tangki Fiber Alternatif dengan daya tahan tinggi, meskipun lebih mahal.
- d. Aerator Wajib digunakan untuk menciptakan gelembung udara yang mendukung pembentukan flok dan menjaga oksigen terlarut.
- e. Karbon Sumber Tambahan Seperti molase, dedak, atau tepung tapioka untuk mendukung pertumbuhan mikroba.

Berdasarkan hasil penelitian pada tabel 4.3 menunjukan bahwa menggunakan media bioflok pada budidaya ikan Lele dan ikan Gurame dapat mengefesiensikan pengeluaran dan memaksimalkan pendapatan. Dengan rata-rata pendapatan per siklus yaitu sebesar Rp 91.200.000 per unit, dan rata-rata pengeluaran persiklus yaitu sebesar Rp 20.000.000. per unit. Adapun pengeluaran tersebut terdiri dari pemanfaatan pakan. Pemakaian probiotik dalam pakan mempengaruh beberapa hal selama proses produksi yaitu Pertumbuhan Panjang Mutlak, Pertumbuhan Bobot Ikan, Kelangsungan Hidup (Survival Rate), Food Convertion Ratio (FCR) dan lain sebagainya.

Berdasarkan hasil penelitian yang dilakukan ditempat lain yang dilakukan oleh Muhammad Kasir ,Junaidin Zakaria ,Syarifiddin yaitu budidaya ikan nila pada kolam bioflok di Sungai telo Kota Makassar diperoleh rata-rata pendapatan persiklus yaitu sebesar 125.981.000 dengan diameter kolam 900 M padat tebar sebesar 400 ekor. Hal tersebut dikarenakan usaha budidaya ikan nila secara sosial, ekonomi dan budaya membawa dampak positif bagi masyarakat sekitar. Perubahan tersebut meliputi pendapatan, hubungan sosial, aktifitas lalu lintas, jalur komunikasi, tingkat keamanan, perilaku masyarakat dan adat istiadat. Beberapa perubahan secara sosial, ekonomi dan lingkungan meliputi, arus lalu lintas semakin ramai di daerah sekitar usaha, penerangan jalan yang semakin banyak, pekerja tidak tetap diambil dari masyarakat sekitar sehingga membantu pemerintah mengurangi pengangguran

Menurut Viena (2021), Teknologi bioflok merupakan salah satu alternatif dalam mengatasi masalah kualitas air dalam akuakultur yang diadaptasi dari teknik pengolahan limbah domestik secara konvensional, aplikasi teknologi bioflok berperan dalam perbaikan kualitas air, peningkatan biosekuriti, peningkatan produktivitas, peningkatan efisiensi pakan serta penurunan biaya produksi melalui penurunan biaya pakan.

KESIMPULAN

Beberapa tahap dalam proses budidaya adalah tahap persiapan, baik persiapan lahan, indukan, pemijahan, dan fasilitas lain yang mendukung proses budidaya ikan lele. Persiapan lahan yang dimaksut adalah persiapan kolam tempat untuk budidaya ikan lele. Kola mini ada bermacam – macam seperti kolam tanah, kolam terpal, dan kolam cor, atau bahkan bisa dengan menggunakan media lain yang saat ini sudah dikembangkan. Indukan dalam proses budidaya tidak dengan menggunakan sembarang ikan. Induk ikan lele yang akan digunakan dengan

kegiatan proses produksi harus tidak berasal dari satu keturunan dan memiliki karakteristik kualitatif dan kuantitatif yang baik berdasarkan morfologi, fekunditas, dan daya tetas telur pertumbuhan dan sintasannya. Karakteristik tersebut dapat diperoleh dari seleksi induk yang ketat.

Manfaat dari penggunaan Bioflok juga diantaranya Dapat menekan biaya pakan karna terdapat flok yang sebagai pakan tambahan untuk ikan, Hemat air karena penggantian air yang minimBioflok yang terbentuk merupkan hasil dari bahan probiotik dan dengan sistem bioflok kita bisa memelihara 2 kali lebih banyak daripada budidaya tradisional di lahan yang sempit, selain itu Bahan probiotik sangat baik dan relatif lebih ideal dalam budidaya ikan lele dan gurame Fungsi bioflok selain dapat memperbaiki kualitas air yakni dapat mengoptimalkan sistem pencernaan ikan, sehingga nutrisi yang masuk dari pakan akan lebih efisien terserap. Karena itu intensitas pemberian pakan harus dikurangi, selain dapat menekan biaya, pengurangan intensitas pemberian pakan juga akan menjaga kualitas air dari sistem bioflok itu sendiri.

DAFTAR PUSTAKA

- Abror dkk, M., Tiawati, E., Manurum, Cm., Khairunnisa, M., Susilo, Ts., Vivin., V. (2022). Teknologi Bioflok Untuk Ikan Rawa, Prosiding Seminar Nasional Lahan Soebotimal ke 10 Tahun 2022. Palembang
- Adnyana, G. (2021). Analisi budidaya ikan pada saluran irigasi terhadap petani dan pelestarian lingkungan di desa bakbakan gianyar. jurnal perencanaan pembangunan wilayah dan pengolaan lingkungan
- Affandi, R. (1993). Studi kebiasaan makanan ikan gurame (Osphronemus Gouramy). Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia.1 (2), 56-67
- Akbar, J., Adrian M dan Aisiah S. (2011). Pengaruh pemberian pakan yang mengandung berbagai level kromium (Cr+3) pada salinitas yang berbeda terhadap pertumbuhan ikan betok (Anabas testudineus).Bionatura, J. Ilmu-Ilmu Hayati dan Fisik. 13 (2), 248-254.
- Amalya,N.T.,Harsono,Y.,&Sulistyani,T.(2023).ManajemenUsahaBudidayaIkanHiasDalamU payaMeningkatkanPenjualan PadaKelompokBudidayaIkanHias.ManajemenPemasaran, 6(1), 2776–3757.
- Ardiwinata, R.O. (1981). Pemeliharaan Ikan Jilid 3: Pemeliharaan Gurami. Sumur Bandung. Bandung.Arief, M., Triasih I., dan Lokapirnasari WP. 2009. Pengaruh pemberian pakanalami dan pakan buatan terhadap pertumbuhan benih ikan betutu (Oxyeleotris marmorata Bleeker). J. Ilmial Perikanan dan Kelautan. 1(1), 51 57.
- Augusta, T.S. (2012). Aklimatisasi Benih Ikan Nila (Oreochromis spp) dengan Pencampuran Air Gambut. Jurnal Ilmu Hewani Tropika. 1 (2), 78-72.Boyd, C. E. 1982.Water QualityManagement in FishPondCultureResearchandDevelopment.SeriesNo.22. International Centre for Aquaculture, Aquaculture Experiment Station.Auburn University, Auburn.300 p.BSNI. 2000. Produksi Ikan Gurame (Osphronemus gouramy) Kelas Benih Sebar . Badan Standar Nasional Indonesia, Jakarta.
- Effendi,H. (2003).Telaah Kualitas Air. Kanisius, Yogyakarta. Effendie,M.I.2002. Biologi Perairan. Bogor:Yayasan Pustaka Nusantara
- Faridah et al. (2019). Cara membuat bioflok prabiotik Jakarta: Grafindo Persada.
- Faridah, S. D. (2019). Budidaya Ikan Lele Dengan Metode Bioflok Pada Peternak Ikan Lele Konvesional. Institut IUN, vol 1 No 2.
- Hadadi, A. (2002). Pengaruh Kadar Karbohidrat Pakan Berbeda Terhadap Pertumbuhan dan Efisiensi Pakan Ikan Gurame (Ospendahualronemus gouramy Lacepede) Ukuran 70 80 g. Program Pasca Sarjana Institut Pertanian Bogor. Bogor.

- Hanief, MAR., Subandiyono., dan Pinandoyo. (2014). Pengaruh frekuensi pemberian pakan terhadap pertumbuhan dan kelulushidupan benih tawes (Puntius javanicus). Journal of Aquaculture Management and Technology. 3 (4), 67-74.
- Hidayat, A. (2023). Diversifikasi Usaha Tani dalam Meningkatkan Pendapatan Petani dan Ketahanan Pangan Lokal.
- Indriyani, N., Febriani, D., Verdian., HA., Prasititi., LA., (2024). Jurnal pengabdian nasional Vol.5(1):42-48, Oleh Penerapan Teknologi Bioflok Pada Pembesaran Lele Di Pokdakan Mina Karya Desa Way Dadi Suka Rame Kota Madya Bandar Lampung
- Kasir, M., Zakaria, J., Syarifudin. (2023). Budidaya Ikan Nila Dengan Sistem Bioflok Di Sungai Tello Kota Makassar. Window of comunity dedication journal vol. 04 No. 01
- Khairuman, H., dan Amri K. (2014). Buku Pintar Bisnis Pembeniha Ikan Konsumsi. Gramedia Pustaka Utama. Jakarta.
- Kordi, K.M.G.H. (2013). Farm Big Book Budidaya Ikan Konsumsi di Air Tawar.Lily Publisher, Yogyakarta.
- Kurniawan Asriyani. (2019). Aplikasi Kolam Bundar Dan Bioflok Pada Pembesaran Ikan Lele Di 53 Aplikasi Kolam Bundar Dan Bioflok Pada Pembesaran Ikan Lele Di Kelompok Remaja Masjid Paritpadang, Sungailiat, Bangka
- Kusmawarni. (2020). Pengaruh Frekuensi Pemberian Pakan Terhadap Laju Pertumbuhan dan Tingkat Kelangsungan Hidup Ikan Lele Sangkuriang (Clarias gariepinus) Di Kolam Terpal. Jurnal Pertanian Terpadu 11(2): 149-160, Desember 2020 http://ojs.stiperkutim.ac.id/index.php/jpt ISSN 2549-7383 (online)https://doi.org/10.36084/jpt..v8i2.273 ISSN 2354-7251 (print) Jpt. Jurnal Pertanian Terpadu, Jilid 11, Nomor 2 | 149
- Mahyuddin. (2019). Pembesaran benih lele Crab. Journal of Aquaculture Management and Technology Volume 1, Nomor 1, Tahun 2012, Halaman 161-179 Online di :http://ejournal-s1.undip.ac.id/index.php/jfpik
- MENLH (Menteri Negara Lingkungan Hidup). 2004. Baku Mutu Air Laut. Keputusan Menteri Negara Lingkungan Hidup. No. 51 Tahun 2004, 11 hlm.
- Muchlisin. 2009. Studi pendahuluan kualitas air untuk pengembangan budidayaperikanan di Kecamatan Sampoinit Aceh Jaya Pasca Tsunami. Jurnal
- Nurlaeli. (2023). Penerapan Media Bioflok Dalam Budidaya Ikan Lele Dumbo (Clariasgariepinus) Dan Ikan Gurame(Osphronemus Gurame) Di Desa Kejuden Kabupaten Cirebon
- Santoso, L., Elisdiana, Y., Setyawan, A., & Hasani, Q. (2023). Penggunaan Kolam Terpal Geomembrane pada Kegiatan Budidaya Ikan Lele Sangkuriang di Kelompok Tani Marga Jaya. Jurnal Pengabdian Fakultas Pertanian, 2 (2),135–142.
- Saptenno, M. J., & Tjiptabudy, J. (2015). Kelembagaan Pertanian dan Perikanan dalam Rangka Ketahanan Pangan (1 ed.). Deepublish
- Simangunsong, Tohap. (2022). Penerapan Terkini Bioflok dalam budidaya Ikan Nila jurnal of research and development, ISSN2808-7259, VOL,3 No.1, 1 Juni 2022).
- Suprianto, Endah Sri Redjeki dan muh Sulaiman Dadiono. (2019). Optimalitas Dosis Probiotik Terhadap Laju Pertumbuhan Dan Kelangsungan Hidup Ikan Nila (Orecoremis niloticus) Pada Sistem Bioflok. Journal of Aquaculture and fish helty vol. 2