Implementasi Convolutional Neural Network untuk Klasifikasi Ekspresi Wajah Penonton Stand Up Comedy
DOI:
https://doi.org/10.70115/ijsta.v2i2.215Keywords:
Stand Up Comedy, Convolutional Neural Network, Red Neuronal Convolucional, Introduction to Facial Expressions, Crowd of SpectatorsAbstract
Stand Up Comedy is one of the growing entertainment industries in Indonesia. The quality of the joke of the stand up comedian can be seen from the audience's response in the form of laughter and facial expressions. But it is very difficult to determine the audience's laughter level manually. Therefore, a tool is needed to measure the audience's laughter level more objectively. In this study, a machine learning model was designed and developed using a convolutional neural network to analyze the facial expressions of the stand-up comedian audience. The research stages include dataset collection, data preprocessing, model design, model training and model testing. The model was tested using artificial data from crowd emotion and live data from video crowd viewers. The results of this study show that the model can classify facial expressions in image and video data well. The model has an overall validation accuracy value of 72.42% with precision, recall, and F1-score values of 0.7341, 0.7309, and 0.7294, respectively, and a testing accuracy of 83.28% with precision, recall, and F1-score values of 0.8477, 0.8329, and 0.8297, respectively.
References
Amaanullah, R. F., Pasfica, G. R., Nugraha, S. A., Zein, M. R., & Adhinata, F. D. (2022). Implementasi Convolutional Neural Network Untuk Deteksi Emosi Melalui Wajah. Jurnal Teknologi Informasi dan Multimedia, 236 - 244.
Amin, M. F. (2022). Confusion Matrix in Binary Classification Problems: A Step-by-Step Tutorial. Journal of Engineering Research.
Banerjee, A., Ghosh, K., Sarkar, A., Bhattacharjee, M., & Chatterjee, S. (2021). Effects of Class Imbalance Problem in Convolutional Neural Network Based Image Classification. Computer Science.
Eka Putra, W. S. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS.
Ekman, P. (1992). Facial Expression of Emotion: New Findings, New Question. Psychological Science, 3(1), 34-38.
Fukushima, K. (1980). Neocognitron: A Self-Organizing Neural Network Modul for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics.
Gholamalinezhad, H., & Khosravi, H. (2020). Pooling Methods in Deep Neural Networks, a Review. arXiv.org.
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Computer Science, Mathematics, Education.
Hania, A. A. (2017). Mengenal Artificial Intelligence, Machine Learning, Neural Network, dan Deep Learning. Jurnal Teknologi Indonesia.
Hills, G. (2006). A Guide to UK Performing Arts. London.
Holder, R. P. (2017). Using Facial Expression Recognition for Crowd Monitoring. Durban, South Africa: College of Agriculture, Engineering and Science, University of Kwazulu-Natal.
Kominfo. (2022, January 14). Pemerintah Dorong Optimalisasi Pertumbuhan Industri Kreatif Indonesia. Diambil kembali dari Kominfo: https://www.kominfo.go.id
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks Revisited. Communication of the ACM Volume 60, 84 - 90.
Kumar, P., & Singh, D. (2024). Pre-Processing Techniques for Enhancing CNN Performance. International Conference on Reliability, Infocom Technologies and Optimization (ICRITO).
Kuo, C. -C. (2016). Understanding Convolutional Neural Networks with a Mathematical Model. Journal of Visual Communication and Image Representation.
Kusdiananggalih, P., & Rachmawati, E. (2021). Pengenalan Ekspresi Wajah dari Cross Dataset Menggunakan Convolutional Neural Network (CNN). 3429-3445.
Lee, Y. (2023). The CNN: The Architecture Behind Artificial Intelligence Development. Journal of student-scientists' research.
Liliana, D., Basaruddin, T., & Oriza, I. (2018). The Indonesian Mixed Emotion Dataset (IMED): A Facial Expression Dataset for Mixed Emotion Recognition. International Conference on Artificial Intelligence and Virtual Reality, 56-60.
MacRury, I. (2012). Humour as 'Social Dreaming': Stand-up Comedy as Therapeutic Performance. Psychoanal Cult Soc 17, 185-203.
Parkavi, J. (2020). A Detailed Study of Deep Learning using Convolutional Neural Network Approach. International Journal for Research in Applied Science and Engineering Technology.
PricewaterhouseCoopers. (2023). Entertainment and media outlook 2019-2023. Diambil kembali dari PricewaterhouseCoopers: https://www.pwc.com/
Rabiee, H., Haddadnia, J., & Mousavi, H. (2016). Crowd behavior representation: an attribute-based approach. SpringerPlus.
Ravi, R., Yadhukrishna, S., & prithviraj, R. (2020). A Face Expression Recognition Using CNN & LBP. International Conference Computing Methodologies and Communication.
Sahu, M., & Dash, R. (2020). A Survey on Deep Learning: Convolution Neural Network (CNN). Smart Innovation, Systems and Technologies.
Sakib, S., Ahmed, N., Kabir, A., & Ahmed, H. (2018). An Overview of Convolutional Neural Network: Its Architecture and Applications. Computer Science.
Simske, S., & Vans, M. (2017). Learning before Learning: Reversing Validation and Training. ACM Symposium on Document Engineering.
Sriyati, Setyanto, A., & Luthfi, E. T. (2020). Literature Review: Pengenalan Wajah Menggunakan Algoritma Convolutional Neural Network. TIKomSIN, 63-72.
Sudarmawan, W. (2020). Kualitas Acara Televisi: Peran Kepuasan Menonton Sebagai Mediator Pengaruh Terhadap Loyalitas Penonton. Yogyakarta: Program Pasca Sarjana Ilmu Ekonomi Universitas Islam Indonesia.
Tian, Y., Kanade, T., & Cohn, J. (2011). Facial Expression Recognition. Handbook of Face Recognition, 487-519.
Utama, A. B., Wibawa, A. P., Muladi, & Nafalski, A. (2022). PSO based Hyperparameter tuning of CNN Multivariate Time-Series Analysis. Jurnal Online Informatika (JOIN), 193-202; DOI: 10.15575/join.v7i2.858.
Wasef, M. R., & Rafla, N. (2021). Hardware Implementation of Multi-Rate Input SoftMac Activation Function. Midwest Symposium on Circuits and Systems.
Zakaria, N., & Hassim, Y. M. (2023). Improved Image Classification Task Using Enhanced Visual Geometry Group of Convolution Neural Networks. JOIV: International Journal on Informatics Visualization.
Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A Review of Convolutional Neural Networks in Computer Vision. Artificial Intelligence Review.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Agus Kurnia Akbar, Pringgo Widyo Laksono, Wakhid Ahmad Jauhari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.