Teknologi Nano Dari Bahan Alam Sebagai Prospek Penerapan Konstruksi Berkelanjutan

Authors

  • Nur Azizah Lubis Universitas Samudra
  • Mentari Darma Putri Universitas Samudra

DOI:

https://doi.org/10.70115/ijsta.v2i2.232

Keywords:

Literatur Review, Nano Technology, Natural Materials, Construction

Abstract

This research explores the benefits of nanotechnology in the construction sector to improve energy efficiency, reduce environmental impact, and create environmentally friendly materials that can be recycled. Using the literature review method, this research analyzes various study results and secondary data related to the application of nanotechnology in construction materials and the utilization of natural materials as additives. The study shows that the application of nanotechnology in concrete can improve its quality, such as accelerating the curing time, reducing cracking and shrinkage, and lowering environmental impact. In addition, natural materials such as nanocellulose, rice husk ash, and coconut fibers have proven to have great potential in strengthening construction materials. Rice husk ash, with its high silica content, is effective as a substitute for conventional silica, enhancing concrete durability and reducing cracking. Meanwhile, coconut fibers provide advantages in tensile strength, flexibility, and earthquake resistance, making them suitable for use in tropical regions. This research underscores the important role of nanotechnology and natural materials in supporting sustainable construction.

References

Agwa, I. S., Omar, O. M., Tayeh, B. A., & Abdelsalam, B. A. (2020). Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete. Construction and Building Materials, 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541

Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814–825. https://doi.org/10.1016/j.conbuildmat.2011.12.068

Aminudin, M. R., & Amaria. (2021). Sintesis dan Karakterisasi Nanosilika dari Abu Sekam Padi (RHA). Prosiding Seminar Nasional Kimia (SNK), 17–33.

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 25(1), 1–15. https://doi.org/10.3390/molecules25010112

Cevallos, O. A., & Olivito, R. S. (2015). Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Composites Part B: Engineering, 69, 256–266. https://doi.org/10.1016/j.compositesb.2014.10.004

Chausali, N., Saxena, J., & Prasad, R. (2023). Nanotechnology as a sustainable approach for combating the environmental effects of climate change. Journal of Agriculture and Food Research, 12(January), 100541. https://doi.org/10.1016/j.jafr.2023.100541

Dwandaru, W. S. B. (2012). Aplikasi Nanosains dalam Berbagai Bidang Kehidupan: Nanoteknologi. Artikel, 1–9. http://staffnew.uny.ac.id/upload/132309688/penelitian/APLIKASI+NANOSAINS+DALAM+KEHIDUPAN+SEHARI.pdf

Dwandaru, W. S. B., & Janah, N. M. (2018). NANO MATERIAL : QUANTUM DOT, NANOPARTIKEL PERAK, GRAPHENE, DAN BAKTERI (Pertama). UNY Press.

Gammampila, et. a. (2010). Application of nanomaterials in the sustainable built environment. Proceedings of the International Conference on Sustainable Built Environments: Special Session on Nanotechnology and Sustainable Built Environment, December, 13–14.

Garas, G., Sayed, A. M., & Bakhoum, E. S. H. (2021). Application of nano waste particles in concrete for sustainable construction: a comparative study. International Journal of Sustainable Engineering, 14(6), 2041–2047. https://doi.org/10.1080/19397038.2021.1963004

Gu, S., Zhou, J., Luo, Z., Wang, Q., & Ni, M. (2013). A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Industrial Crops and Products, 50, 540–549. https://doi.org/10.1016/j.indcrop.2013.08.004

Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Construction and Building Materials, 149, 621–628. https://doi.org/10.1016/j.conbuildmat.2017.05.155

Huang, X., Xing, G., Li, Y., & Nannen, E. (2015). Nanomaterials for energy-efficient applications. Journal of Nanomaterials, 2015, 2–4. https://doi.org/10.1155/2015/524095

Kantapong, B., Withit, P., Tachai, L., & Katsuyoshi, K. (2018). Effect of rice husk ash silica as cement replacement for making construction mortar. Key Engineering Materials, 775 KEM, 624–629. https://doi.org/10.4028/www.scientific.net/KEM.775.624

Khaidir, R. E. M., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Omar, N. A. S., Anuar, M. F., Wahab, S. A. A., & Azman, A. Z. K. (2019). Exploring Eu3+-doped ZnO-SiO2 glass derived by recycling renewable source of waste rice husk for white-LEDs application. Results in Physics, 15(August). https://doi.org/10.1016/j.rinp.2019.102596

Lee, C. S., Amin Matori, K., Ab Aziz, S. H., Kamari, H. M., Ismail, I., & Mohd Zaid, M. H. (2017). Comprehensive Study on Elastic Moduli Prediction and Correlation of Glass and Glass Ceramic Derived from Waste Rice Husk. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/8962986

Lumingkewas, R. H. (2018). Beton Nano Komposit Serat Alam Sebagai Bahan Konstruksi Infrastruktur Tahan Gempa. Technopex 2018, 251–257. http://technopex.iti.ac.id/ocs/index.php/tpx18/tpx18/paper/viewPaper/117

Lumingkewas, R. H., Yuwono, A. H., Hadiwardoyo, S. P., & Saparudin, D. (2018). The compressive strength of coconut fibers reinforced NANO concrete composite. Materials Science Forum, 943 MSF, 105–110. https://doi.org/10.4028/www.scientific.net/MSF.943.105

Lyshevski, S. E. (2004). Nanotechnology. The CRC Handbook of Mechanical Engineering, Second Edition, 18-1-18–18. https://doi.org/10.3141/2141-09

Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: A Revolution in Modern Industry. Molecules, 28(2). https://doi.org/10.3390/molecules28020661

Mishra, S. N., & Kumar, N. M. (2022). Impact of Partial Substitution of Cement with Cow Dung Ash and Rice Husk Ash on Performance of Concrete. International Journal for Research in Applied Science and Engineering Technology, 10(5), 5103–5108. https://doi.org/10.22214/ijraset.2022.43601

Miyandehi, B. M., Feizbakhsh, A., Yazdi, M. A., Liu, Q. feng, Yang, J., & Alipour, P. (2016). Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cement and Concrete Composites, 74, 225–235. https://doi.org/10.1016/j.cemconcomp.2016.10.006

Nagraik, P., Shukla, S. R., Kelkar, B. U., & Paul, B. N. (2023). Wood modification with nanoparticles fortified polymeric resins for producing nano-wood composites: a review. Journal of the Indian Academy of Wood Science, 20(1), 1–11. https://doi.org/10.1007/s13196-023-00313-2

Nahla Naji Hilal,Ibrahim A. S AL-Jumailya, Q. K. (2015). An overview on the Influence of Pozzolanic Materials on Properties of Concrete. International Journal of Enhanced Research in Science Technology , 4(3), 81–92.

Norhasri, M. S. M., Hamidah, M. S., & Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91–97. https://doi.org/10.1016/j.conbuildmat.2016.12.005

Nugraha, A. W. (2021). Potensi Penggunaan Partikel Nanosilika Dari Abu Sekam Padi Sebagai Bahan Tambahan Dalam Pembuatan Beton (Mini Review). Agroindustrial Technology Journal, 5(1), 21. https://doi.org/10.21111/atj.v5i1.5111

Olafusi, O. S., Adewuyi, A. P., Sadiq, O. M., Adisa, A. F., & Abiola, O. S. (2017). Rheological and Mechanical Characteristics of Self-Compacting Concrete Containing Corncob Ash. Journal of Engineering Research, 22(1), 72–85.

Olafusi, O. S., Sadiku, E. R., Snyman, J., Ndambuki, J. M., & Kupolati, W. K. (2019). Application of nanotechnology in concrete and supplementary cementitious materials: a review for sustainable construction. SN Applied Sciences, 1(6), 1–8. https://doi.org/10.1007/s42452-019-0600-7

Papadopoulos, A. N., & Taghiyari, H. R. (2019). Innovative wood surface treatments based on nanotechnology. Coatings, 9(12). https://doi.org/10.3390/coatings9120866

Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G., & Ahalawat, S. (2014). Sol-Gel processing of silica nanoparticles and their applications. Advances in Colloid and Interface Science, 214, 17–37. https://doi.org/10.1016/j.cis.2014.10.007

Singh, P., Srivastava, S., & Singh, S. K. (2019). Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomaterials Science and Engineering, 5(10), 4882–4898. https://doi.org/10.1021/acsbiomaterials.9b00464

Sob, P. B., Alugongo, A. A., & Tengen, T. B. (2020). A conceptual model based on nanoscience and nanotechnology in design of smart home for energy efficiency. International Journal of Engineering Research and Technology, 13(1), 100–106. https://doi.org/10.37624/ijert/13.1.2020.100-106

Vinayaq, M. B., Aleem, M. I. abdul, & P.magudeswaran. (2016). Strength and Durability Characteristic of Geopolymer Concrete With Micro Silica Nano Silica and M-Sand. Researchgate.Net, 7(1), 669–678. https://www.researchgate.net/profile/Magudeaswaran-Palanisamy/publication/304999975_Strength_and_durability_characteristic_of_geopolymer_concrete_using_nanosilica_micro_silica_with_m_sand/links/577f265308ae5f367d33ec6e/Strength-and-durability-characterist

Wahab, S. A. A., Matori, K. A., Aziz, S. H. A., Zaid, M. H. M., Kechik, M. M. A., Azman, A. Z. K., Khaidir, R. E. M., Khiri, M. Z. A., & Effendy, N. (2020). Effect of ZnO on the phase transformation and optical properties of silicate glass frits using rice husk ash as a SiO2 source. Journal of Materials Research and Technology, 9(5), 11013–11021. https://doi.org/10.1016/j.jmrt.2020.08.005

Wang, W. H., Meng, Y. F., & Wang, D. Z. (2017). Effect of rice husk ash on high-Temperature mechanical properties and microstructure of concrete. Kemija u Industriji/Journal of Chemists and Chemical Engineers, 66(3–4), 157–164. https://doi.org/10.15255/KUI.2016.054

Downloads

Published

2024-12-31